AIRWAY CLEARANCE AND MANAGEMENT IN NEONATE

Al Heuer, PhD, MBA, RRT-ACCS, RPFT, FAARC Professor-Rutgers University Co-Owner- A & T Lectures

Learning Objectives

- Explain Indications for airway clearance techniques in neonates
- Describe the types of airways clearance techniques
- Illustrate the equipment used and techniques.
- Review the hazards and how to address them.
- Evaluate response to therapy.
- Examine artificial airways in neonates.
- Furnish Add'l Resources

Traditional Airway Clearance Techniques

- 3
- Postural drainage
- Percussion
- Postural drainage and percussion
- Vibration of the chest wall
- Suctioning
- Mechanical Insufflation/Exsufflation
- Adjunctive medications

Airway Clearance Therapy (ACT)

Cough

- Forced expiration technique (FET)
- Coughing and FET
- Positive expiratory pressure (PEP) therapy
- Cough assist
- Autogenic drainage (AD)
- PEP + AD

Selection of Patients for ACT

- 5
- Conditions in which airway clearance therapy may not be beneficial
- Conditions in which airway clearance therapy may be beneficial
 - Bronchiolitis
 - Acute lobar atelectasis
 - Cystic fibrosis
 - Neuromuscular disease or injury
 - Lung abscess

Asthma

CXR of Potential ACT Candidates

Contraindications

- Frank hemoptysis
- Empyema
- Foreign body aspiration
- Untreated pneumothorax
- Unstable hemodynamic or overall clinical status

Length and Frequency of Therapy

- CF and bronchiectasis: 30 to 45 minutes
- □ Most ACTs, 15 to 20 minutes
- Rarely needed more than every 4 hours
- Evaluated every 48 hours and modified as appropriate.

Therapy Modification

- 9
- Medical or surgical procedures
- Implanted devices
- Brittle bones
- Trendelenburg
 - Gastroesophageal reflux
 - Intracranial trauma or surgery
 - Increased intracranial pressure
 - Abdominal distention
 - Cardiopulmonary failure

Postural Drainage Positions

- □ A. Posterior of Right and Left Upper lobes
- B. Apices of Right and Left Lung
- C. Anterior of Right and Left Upper lobes
- D. Superior Segments of Both lower lobes
- E. Lateral Basal Segments
- **F.** Posterior Segments of Both Lower lobes

Percussion...With Postural Drainage

Chest Wall Vibration

Cough Assist-Inexsufflation

Cough Assist-Inexsufflation-Cont.

- 1 Second Inspiration
- 2-3 second Expiration
- □ Insp. Pressure Max- 20-25 cm H2O
- Expiratory Pressure Max. -20-35 cm H2O
- □ 5-10 cycles over 5-10 minutes
- Monitor of contraindications and adverse reactions

Suctioning Procedure

Vacuum pressure

- Neonates: 60 to 80 mm Hg
- Children: 80 to 100 mm Hg
- Appropriate length and size of catheter
 - Diameter should not exceed 1/2 ID of artificial airway
 - Neonates 5 8 Fr., Pediatrics 8 12 Fr.
- Instillation of saline or other medication
- Nasotracheal suction
- Bulb suction
- Closed tracheal suction system

Suction Catheter Sizes

Endotracheal/Trach eostomy Tube (inner diameter in mm)	Suction Catheter Size (French)	In-Line Suction Catheter (French)
2.5	5	6
3	6	6 or 8
3.5	6	8
4	8	8
4.5	8	10
5	10	10
5.5	10	10

To Instill Saline in an Artificial Airway or Not?

- Saline instillation prior to suctioning remains a controversial topic
- Catheter insertion alone may dislodge thousands of bacteria into the lung
- A flush of saline increases this and potentially distributes them distally into the lung
- When necessary, the low-sodium solution may preserve the antimicrobial component of the airway mucus while still enhancing cough and secretion removal.
- 1-2 mls of half NS or 0.45% saline

Mucolytic and Hydrating Agents

🗆 Dornase alfa (Pulmozyme)

- Mechanism of action
- Place in therapy
- Dosage, administration, and adverse events
- N-Acetylcysteine (Mucomyst)
 - Mechanism of action
 - Place in therapy
 - Dosage, administration, and adverse events
- Hypertonic Saline (3 or 7% saline)

Complications of ACT

Hypoxemia

- Airway obstruction and respiratory arrest
- Intracranial complications
- Rib fractures and bruising
- Airway trauma
- Infection

Evaluation of Therapy

- Amount of secretions expectorated
- Hydration status
- Changes in sputum production
- Breath sounds
- Vital signs
- Chest x-ray
- Blood gases
- Lung mechanics

Documentation of Therapy

- 21
- Technique used
- Lobes treated
- Position of the patient
- Suctioning
- Pretreatment and post-treatment breath sounds
- Vital signs
- Amount and quality of the sputum

Airway Management

Intubation

Indications

- Lack of pulmonary function
- **Deficits in oxygenation (** $PaO_2 < 60$ mm Hg)
- **Deficits in ventilation (PaCO_2 > 50-60 \text{ mm Hg})**

Equipment

ETT

- Laryngoscope and blades
- Suction equipment

Age of Patient	Laryngoscope	Internal Diameter of Tracheal Tube (mm)	Distance From Midtrachea to Lips or Gums (cm)	Suction Catheter (F)
		<u>Age (years)</u> + 4 4	<44 weeks gestational age: 6 + Weight (kg) >44 weeks gestational age: 3 × TT size	2 × TT size
reterm infant	Miller 0 [†]	2.5, 3.0 uncuffed	8	5-6
Term infant	Miller 0-1† Wis-Hipple 1 Robertshaw 0	3.0, 3.5 uncuffed	9-10	6-8
6 months		3.5, 4.0 uncuffed	10.5-12	8
1 year	Miller 1 Wis-Hipple 1½ Robertshaw 1	4.0, 4.5 uncuffed	12-13.5	8
2 years	Miller 2 Macintosh 2 Flagg 2	4.5 uncuffed 4.0 cuffed	13.5	8
4 years		5.0, 5.5 uncuffed 4.5 cuffed	15	10
6 years		5.5 uncuffed 5.0 cuffed	16.5	10
8 years	Miller 2 Macintosh 2	6.0 cuffed	18	12
10 years 🏼		6.5 cuffed	19.5	12
12 years	Macintosh 3	7.0 cuffed	21	12
Adolescent	Macintosh 3 Miller 3	7.0, 8.0 cuffed	21	12

FIGURE 13-7 The NeoBar. A commercial adaptation of the Logan bow for stabilizing an infant endotracheal tube.

Copyright © 2015, 2010, 2003, 1995 by Saunders, an imprint of Elsevier Inc.

Considerations for Extubation

Condition

- Improved or reversed
- Hemodynamically stable
- Breathing spontaneously
- Able to protect airway

Tracheotomy

Indications

- Airway obstruction
- Airway protection
- Long-term ventilation
- Pulmonary hygiene

Tracheotomy (Cont.)

Tubes

- High volume, low pressure
- Foam cuff
- Tight to shaft (TTS)
- Procedure and technique

Tracheotomy (Cont.)

Complications

- Prevention
 - Good training for caregivers
- Plugging of the tube
- Accidental dislodgment
- Others
 - Bleeding, stomal and suprastomal granulation tissue, tracheal erosion, suprastomal tracheomalacia
- Speech delay and delay in phonation
 - Passe Muir valve
- Swallowing complications

Tracheotomy (Cont.)

- Decannulation (indications)
 - Original condition resolved or improved
 - Natural airway adequate
 - Able to protect airway
- Procedure
 - Immediately remove the tube.
 - Downsize and cap the tube.
 - Extubate after single-stage laryngotracheal reconstruction.

Take Home Points

- Airways clearance techniques can be beneficial to neonates and pediatric patients.
- □ There are many techniques which can be applied.
- Selecting the best technique(s) should be tailored to the patient and their condition.
- Most airway clearance techniques have hazards which can be addressed by the skilled clinician.
- Careful assessment is the foundation for evaluating the effectiveness of this type of therapy.
- Artificial airways should be suitable for the patient, properly maintained and removed as soon as practical and safe.

Selected References

- Neonatal and Pediatric Respiratory Care, ed 5. Walsh. 2018.
- Rocha, G., Soares, P., Gonçalves, A., Silva, A. I., Almeida, D., Figueiredo, S., ... & Guimarães, H. (2018). Respiratory care for the ventilated neonate. *Canadian respiratory journal*, 2018.
- Egan's Fundamentals of Respiratory Care, ed 12, Kacmarek, Stoller & Heuer, 2021.
- Respiratory Disease: A Case Study Approach to Patient Care, ed 3, 2007.
- Mahmood, Newton & Pallotto, Current trends in neonatal ECMO. Semin Perinatol. 2018 Mar;42(2):80-88. doi: 10.1053/j.semperi.2017.12.003.
- AARC.org
- Pubmed
- Medline